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Abstract. Missing values are a common problem in data science and
machine learning. Removing instances with missing values can adversely
affect the quality of further data analysis. This is exacerbated when there
are relatively many more features than instances, and thus the propor-
tion of affected instances is high. Such a scenario is common in many
important domains, for example, single nucleotide polymorphism (SNP)
datasets provide a large number of features over a genome for a relatively
small number of individuals. To preserve as much information as possi-
ble prior to modeling, a rigorous imputation scheme is acutely needed.
While Denoising Autoencoders is a state-of-the-art method for imputa-
tion in high-dimensional data, they still require enough complete cases
to be trained on which is often not available in real-world problems. In
this paper, we consider missing value imputation as a multi-label classifi-
cation problem and propose Chains of Autoreplicative Random Forests.
Using multi-label Random Forests instead of neural networks works well
for low-sampled data as there are fewer parameters to optimize. Ex-
periments on several SNP datasets show that our algorithm effectively
imputes missing values based only on information from the dataset and
exhibits better performance than standard algorithms that do not require
any additional information. In this paper, the algorithm is implemented
specifically for SNP data, but it can easily be adapted for other cases of
missing value imputation.

Keywords: Missing value imputation · Multi-label classification · High-
dimensional data.

1 Introduction

Missing values are a common problem and an important issue in the domain
of data science and machine learning. Most off-the-shelf statistical and machine
learning methods cannot handle missing values, and such values must be im-
puted, or the whole instance or row removed, before the actual data analysis.
When many values are missing, considering only instances with complete infor-
mation can lead to a loss of necessary information and can yield a very poor or
even empty dataset.
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A special challenge is missing values occurring in several or even most of the
samples and/or features of the training set, and when there are sufficiently more
features than samples (p ≫ N), which means that removing samples amplifies
the imbalance. Single Nucleotide Polymorphism (SNP) is an example of high-
dimensional and low-sampled categorical data where missing values are very
common and can affect a large number of the features. Other examples of data
with such characteristics include gene expression arrays, classification problems
in astronomy, tool development for finance data, and weather prediction [12].

Multiple Imputation with Chained Equations (MICE) [4] remains a state-
of-the-art approach in the imputation domain, very powerful and flexible, but
requires proper parameter tuning and a deep understanding of the data. We
have not seen evidence of MICE usage for high-dimensional data. We propose
possible MICE parameters to make computation time feasible but do not obtain
promising results. Denoising Autoencoders have proved to work well for the
missing value imputation [5], but they require enough complete cases for the
training phase, which is not always the case in real-world data and, in particular,
high-dimensional data.

In this paper, we consider missing value imputation of categorical features
as a multi-label classification problem, and thus exploiting multi-label models
such as Random Forests [3] becomes possible. We present an algorithm that ef-
ficiently imputes missing values when data has complete cases to be trained on
and can be adapted for high-dimensional data when having fully complete cases
is very unlikely. We explore the idea of a multi-label prediction cascade, using a
methodology similar to that of, e.g., Classifier Chains [15] in the multi-label clas-
sification literature, where already processed targets are stacked as new features
for further targets. We use Chains of Autoreplicative Random Forests (ChARF)
such that each Random Forest processes one window of consequent features and
incorporates information from already imputed previous windows. We treat win-
dows as data that can be given to an Autoencoder, however, noticing that we
do not explicitly need a hidden-layer representation, we use multi-label Random
Forests instead of neural network architecture. To the best of our knowledge,
using simpler multi-label models as Autoencoders without explicit encoding has
not been widely studied in the literature. We argue that such an approach can
be useful for similar purposes, at least for imputation (similarly to Denoising
Autoencoders), and has its advantages, such as an ability to efficiently process
data of small sample size.

We study imputation for SNP data as it exhibits all the aspects we are inter-
ested in tackling: high dimensional data (such that p ≫ N), the possibility of a
significant proportion of missing values, and no reference panel but at least some
local correlations in the feature space. At the same time, our approach can be
adapted to any data exhibiting these characteristics. Although SNP data is an
instance of categorical data, our model can easily be modified to work with con-
tinuous data by using regressor models, which have already been investigated in
the context of ‘regressor chains’, e.g., [1]. For high-dimensional and low-sampled
datasets, the ChARF method shows to be very competitive w.r.t. both impu-
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tation quality and time complexity. At the same time, even for low-dimensional
data we can adapt this approach with personalized splitting for blocks depending
on missing patterns.

The rest of the paper is organized as follows. After summarizing background
and related work in Section 2, we present our method in Section 3. The results
and their discussion as well as complexity analysis are in Section 4. In Section 5,
we draw conclusions and describe future work.

2 Related work

Traditionally, missing data is categorized into three types: Missing Completely
At Random (MCAR, the absence occurs entirely independently from feature
values), Missing At Random (MAR, the absence depends only on the observed
feature values), and Missing Not At Random (MNAR, the absence depends on
both observed and the unobserved feature values) [18].

Within this work, we consider high-dimensional data with categorical fea-
tures. An example of such a situation is Single Nucleotide Polymorphism (SNP)
data, which presents a range of genetic differences between the individuals. Typ-
ically the associations between traits/diseases are studied. A standard coding for
values in SNP datasets is 0, 1, and 2 for variants AA, Aa, and aa respectively,
where allele A corresponds to the prevalent variant in the population and allele
a to the minor one. Due to linkage disequilibrium [7], neighboring features can
correlate to each other, and taking such dependencies into account is helpful
for missing value imputation. At the same time, some long-distance correla-
tions (across the genome) are also possible, though rare. A typical SNP dataset
contains a number of features (positions on the genome) greatly exceeding the
number of samples (individuals in the population of the study). SNP datasets
are prone to a missing values problem due to a variety of reasons, such as de-
viations from the Hardy-Weinberg equilibrium, an abundance of rare variants,
and missing features in combining different datasets in meta-studies [7]. Within
this study, we assume that missing data is missing completely at random as it
depends on external factors rather than observed/unobserved values. Removing
features or samples containing missing values may be inefficient as this implies
loss of important information and impoverishment of the data.

For SNP data, imputation methods can be split into reference-based and
reference-free methods. Reference-based techniques require a reference panel
based on whole-genome sequencing samples and show the advantage of using
large datasets with complete data as well as additional information such as
linkage patterns, mutations, and recombination hotspots [7]. The main limit-
ing factors for such methods are the size and sequencing coverage of reference
panels, as well as the conformity of ethnicity in the reference panel and data con-
taining missing values to impute. While reference-based methods are considered
a first-choice approach to impute missing values in SNP data, the correspond-
ing reference panels are not always available, especially for non-human species.
Moreover, these methods require similarity of populations in the references and
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data to impute. These facts necessitate the study and development of methods
that are independent of the reference panels and impute missing values exploiting
only statistical inferences from the data itself.

The existing missing value imputation methods range from simple replace-
ment with mean, mode, or median statistics [13] to more sophisticated tech-
niques such as k-Nearest Neighbours (kNN) [19], Singular Value Decomposition
(SVD) [21], Random Forests [20], and logistic regression. Recently developed
deep learning techniques have also been applied for imputation, e.g. Denoising
Autoencoders [5] method. Below we present the listed methods in more detail.

Mode [13]. For each feature, a mode of non-missing values, i.e. the most
frequent value, is estimated, and the missing values are imputed with this mode.

k-Nearest Neighbors (kNN) [19]. The imputation procedure is based
on the weighted k-Nearest Neighbors algorithm. The algorithm looks for the k
samples that are most similar to the one whose missing values need to be replaced
and uses these k neighbors to impute the missing values. For experiments, we
used knncatimpute function implemented in scrime R package.

Singular Value Decomposition (SVD) [21]. This method calculates the
k most significant eigenvectors and then imputes the missing values using a low-
rank SVD approximation estimated by an Expectation-Maximization algorithm.
For experiments, we used IterativeSVD function implemented in fancyimpute [17]
python package.

Multivariate Imputation by Chained Equations (MICE) [4]. The
imputation process is organized into several cycles of prediction, on one cycle
each variable is regressed on the other variables (all or subset). Initially, MICE
imputes missing values with samples from features distributions and then carries
out a number of imputation iterations. The MICE method is very flexible w.r.t.
base model, i.e. any per feature estimator is possible.

MissForest [20]. MissForest also works in an iterative manner by predicting
missing values by Random Forests trained on the observed features. MissForest
builds a new Random Forest for each feature and iteration, while we propose to
use a much smaller number of forests with a small number of features each, and
this allow to significantly alleviate the computation (see Subsection 4.1)

The MICE and missForest methods are commonly used for different types
of data and, in particular, clinical data, and can be considered state-of-the-art
for missing value imputation, but we have not found big evidence of using these
methods for high-dimensional datasets, as they become very costly with the rise
of the number of features. In our empirical study we try to adapt the MICE
method for SNP data, but do not obtain promising results (see Section 4).

Denoising Autoencoders (DAE) [23,5]. Neural networks reproducing in-
put X as output are called Autoencoders [2]. Classical Autoencoders imple-
mented within neural networks architecture consist of Encoder and Decoder
structures as illustrated in Fig. 1a. While the inner structure of hidden layers
can be very different, the typical common property is having a narrow middle
layer H to restrict the model to learning only important information from the
data. Optimizing hidden layers implies a search for some inner patterns in the
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(a) Classic Autoencoder (b) Denoising Autoencoder

(c) Autoencoder without an explicit encoding

Fig. 1: An illustration of (a) Classic Autoencoder (with hidden representation H), (b)
Denoising Autoencoder (input is corrupted with noise or missing values as Ẋ before
encoding), and (c) Autoencoder without an explicit encoding (as we use in our work).
In all cases, the goal is to minimize the difference between X and its reconstruction Z.

data. Denoising Autoencoders [23] receive data Ẋ corrupted by noise or missing
values as input and complete data X as output during the training phase when
they learn to remove noise or impute missing values (see Fig. 1b). Denoising Au-
toencoders have been successfully applied to address the missing data problems
in various fields [23]. In [5] the authors suggest Sparse Convolutional Denoising
Autoencoders (SCDA) to impute missing values in SNP datasets. Sparsity is
required due to high dimensionality and insufficient number of samples to train
on, and convolution layers are used as neighboring features have a bigger chance
to explain each other, at least in SNP data. The main limitation of the SCDA
method is that they require training data of complete cases, which is usually very
limited in SNP data. For this reason, we don’t include the SCDA method in an
experimental setting where all or almost all cases are affected by missingness.

Although apparently largely overlooked in the literature, we have noticed
that any other model designed for the multi-label prediction can be used instead
of a neural network as an Autoencoder. One such example is a combination of
decision trees [25] where the first decision tree is used as an encoder, and the
second one is used in a vice versa manner as a decoder. Meanwhile, this idea can
be simplified even more: if we are not aiming to extract the information about
the inner patterns of the data, the usage of a straightforward model such as a
decision tree or random forest is sufficient. Such an approach can facilitate the
optimization process for the model on data containing a small number of samples,
and at the same time, decision trees and random forests are both efficient and
simple to understand and interpret. To the best of our knowledge, this simple but
efficient idea has not been well studied in the literature. We argue, that however it
deserves attention and can be further investigated. Applying this idea, we suggest
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further Autoreplicative Random Forests. While we choose Random Forests as
a well-known and stable multi-label method with good performance, this idea
may be developed by using other multi-label methods, such as e.g. Classifier
Chains [15], Multilabel k Nearest Neighbours [24], Random k-Labelsets [22],
Conditional Dependency Networks [11].

3 Method

Our method consists of two main novelties. First, we use multi-label classifiers
(e.g. Random Forests) as imputational Autoreplicative models (Subsection 3.1).
Second, Chains of subsequent windows of Autoreplicative models allow adapting
the idea of Autoencoders to real-world high-dimensional scenarios when there is
no complete data available for training (Subsection 3.2).

3.1 Autoencoders without an explicit encoding

Our method is inspired by the idea of Denoising Autoencoders for missing value
imputation. We use multi-label predictive models that are not based on neu-
ral networks. With this approach, we want to efficiently process relatively low-
sampled (compared to a number of features) datasets, where complex neural
networks are prone to overfitting and get stuck in optimizing parameters. Fur-
thermore, as discovering the inner structure of the data itself is out of the scope
of this task, we do not explicitly need hidden layers of the neural network.
We would like to point here that any multi-label classification model can be
used for this goal. We will use Random Forest as it proved to be a compet-
itive and robust method. However, an approach of autoreplicative imputation
models deserves better research and possibly may be improved by the usage
of more sophisticated multi-label models. To the best of our knowledge, multi-
label classification models and, e.g., Random Forests have not been used before
as autoreplicative models reproducing input as output.

The training process is illustrated in Fig. 1c. First, we select complete cases
of the entire dataset or of a features subset (more on that in the following
subsection) X, obtain dataset Ẋ by manually corrupting them with missing
values (uniformly distributed, following the proportion of missing values in the
original dataset) , and train an Autoreplicative forest to reproduce Z ∼ X from
Ẋ, i.e. fill missing values by minimizing loss function between Z and X. Then
the fitted model can be used to replace actual missing values.

3.2 Ensemble of chains of Autoencoders

Autoencoders are considered a baseline method for missing value imputation.
However, they require complete data for training. It is often difficult or impos-
sible to obtain such datasets in real-world problems when missing values can
be abundant. This is especially the case for high-dimensional data: with a large
number of features, it is likely not feasible to select a reasonable number of rows
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without missing values, even for a small ratio of missingness. As a consequence,
we need to adapt our approach for the high-dimensional datasets, when training
data may be not available. For this goal, we split the whole set of consequent
features into windows of size ∆, such that for the features within one window it
is possible to select a training subset of reasonable size with full information. We
fit the model on the selected subset and then predict values to impute missing
ones in the remaining subset.

In the case of SNP data, it makes sense to select windows of consequetive
features, as they are more likely to provide information about each there. This
effect is due to linkage disequilibrium, i.e. close neighbor positions in the genomes
are more likely to be inherited from the same ancestors. This window approach
may serve for other types of ordered data, such as e.g. gene expression arrays,
time series, images, and sound fragments.

Fig. 2: Average complete training size (i.e. rows without missing values) according to
window size ∆. Missing values are simulated for the MCAR scenario with a uniform
distribution. Dashed black lines show examples of possible window sizes for τ = 0.4.

Fig. 2 shows the average size of available training data in simulation with
uniformly distributed missing values. As it can be seen, it decreases dramatically
with the growth of window size. To increase the method’s power to catch and
use dependencies between the features, we suggest chains of imputation models,
similar to the Classifier Chains methodology [15], i.e. stacking of already pro-
cessed features as new features for the consequent estimators (see Fig. 3). To
keep the complexity of the algorithm feasible and reduce computation time, we
do not incorporate all previous windows but select only ν last ones.

The basic intuition behind using windows of consequent features is that short
chromosome segments can be inherited from a distant common ancestor [7] and
thus shared between some individuals. For this reason, we select one forward and
one backward chain, as well as several (up to 3) random chains, to incorporate
possible long-term interactions. Selection of previously imputed windows can be
generalized as, for example, sampling from a normal distribution with a mean
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Fig. 3: Model processes windows in a chain, incorporating windows with already im-
puted values as additional features. At one step, we split the window of size ∆ into
training part with complete data and testing part with missing values. After fitting on
training data corrupted with missing values, we impute missing values in testing part.

equal to the current window number (Fig. 4a) or other kinds of distributions for
different kinds of data. In the ensemble of chains, we average predictions (i.e.
take a major vote) for each missing value.

To support the hypothesis that neighboring features have a higher chance to
explain each other, in Fig. 4b-4f we include experiments for using all neighboring
(strategy A) or only two distant (strategy B) windows on distance ν. We can
see that including very close neighbors significantly increases the quality of im-
putation, while with including distant neighbors the improvement may present
(this fact corresponds to possible long-term correlations), but is very unstable
and cannot be guaranteed.

Table 1: Example window sizes ∆ according to desired training samples, via Eq. 1

Size of training data
% of missing data 1% 5% 10% 20% 30%

20% of original data 160 31 15 7 4
30% of original data 120 23 11 5 3
50% of original data 69 14 7 3 2

Our method is summarised as pseudocode in Alg.1. We compare performance
of the models with hyperparameters ∆ and ν in Section 4. We estimate theo-
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(a) Probabilities to take already predicted
windows into chain at position 50; 100 win-
dows; 10 previous windows for each chain; 3
chains: forward, backward, and random.

(b) Two strategies to include distant win-
dows into analysis

(c) Window size ∆ = 10, strategy A (d) Window size ∆ = 5, strategy A

(e) Window size ∆ = 10, strategy B (f) Window size ∆ = 5, strategy B

Fig. 4: Including the 2ν closest neighbor windows as additional features (strategy A)
significantly increases the accuracy while including only 2 windows on distance ν (strat-
egy B) has occasional and unstable improvement.
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retically the maximum size ∆ of one window according to the desired size of
training data τ . As τ ∼ (1− f)∆, then

∆(τ) ∼ log1−f τ =
ln τ

ln(1− f)
, τ ∈ (0, 1), (1)

where f is a fraction of missing values and τ is a desirable threshold for a ratio
of complete rows in the training subset. The empirical results of the simula-
tion (Fig. 2) correspond to this estimation. We see that with the growth of
window size the size of training data decreases dramatically. As a consequence,
the window size should be selected carefully by taking the missing value ratio
into account. We suggest possible window sizes according to the desired size of
training data in Table 1.

Algorithm 1
1: procedure ChARF(XN×p, window size ∆, # of previous steps ν, # of chains K)
2: Split features into ∆-wide windows ▷ Last window has size

p (mod ∆)
3: Generate K permutations of (1, 2, ..., n = ⌈ p

∆
⌉)}

4: for each permutation {σ(1), ..., σ(n)} do
5: for each window Xσ(i) do
6: Xext ← Xσ(i)

⊕
Xσ(i−1)

⊕
...

⊕
Xσ(i−ν) ▷ Stack last ν processed

windows as additional
features

7: Xtrain ← Xcomplete
ext ▷ Select complete cases

for training
8: X̃train ← Xtrain corrupted with missing values ▷ Uniformly dis-

tributed, % of m.v.
calculated from Xσ(i)

9: Xtest ← Xmissing
ext

10: Fit model on (X̃train, Xtrain)
11: Xpred ← predictions of fitted model on Xtest

12: replace missing values in Xtest with corresponding values from Xpred

13: Take major vote for all K predictions per missing value

4 Results and discussion

We evaluate the performance of our method by imputation accuracy, i.e. per-
centage of correctly imputed values out of missing ones. We test Chains of au-
toreplicative Random Forests (of 10 trees each) on several high-dimensional SNP
datasets (p ≫ N), briefly summarized in Table 2. For the SNP data, we test only
the MCAR scenario, as missing values are likely to happen because of external
reasons rather than depending on missing or observed data. We simulate the
missing values by masking true values in the data under a uniform distribution,
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with the proportion of missing values 1%, 5%, 10%, 20%, and 30%. The proce-
dure is repeated 5 times to produce independent incomplete datasets. Average
accuracy is shown. The empirical study has shown a significant improvement,
when the features are one-hot encoded (paired t-test statistics 3.442, df=29,
p-value=0.0018, see Fig. 5).

Table 2: Datasets used in experiments, p features, N samples.

Name p N

Maize [14] 44,729 247
Eucalyptus [10] 33,398 970
Colorado Beetle [6] 34,186 188
Arabica Coffee [8] 4,666 596
Wheat (Zuchtwert study) [16] 9,763 388
Coffea Canephora [9] 45,748 119

Fig. 5: One-Hot encoding may significantly improve the imputation power of ChARF
method in SNP datasets.

For ChARF, we first evaluate hyperparameters: window size ∆ ∈ [3, 5, 8, 10, 15],
and number of previous windows in the chain to take as new features ν ∈
[0, 1, 3, 5, 10]. To reduce the computation time, we first search for the best values
of ∆ and ν on reduced datasets (first 1000 features) and then use these values
for computation on the entire datasets. The grid-search results are presented in
Fig. 6. As expected (from estimation in Subsection 3.2), from Fig. 6 we see that
the most effective window size decreases with the growth of a number of missing
values (since a bigger part of instances gets corrupted).

For the MICE method, with the default settings, each estimator considers all
other variables, which makes the total complexity at least quadratic and thus
requires huge computational and time resources in the case of high-dimensional
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Fig. 6: Accuracy of imputation for SNP datasets for different ratios of missing values
(indicated in column headers). Better accuracy lighter/higher value (shown in cells).
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data (in our experiments, the machine ran out of memory). The original R
package suggests a pre-processing quickpred function, which selects the predictive
features based on pairwise correlation, but in this case, quadratic complexity is
required in this step. With the intuition that the neighboring features in SNP
data have the highest chance to explain each other, for the experiments we select
windows of 10 neighbors for each feature. Such an approach is computationally
feasible, but the imputation still leaves some missing values in the data (around
10-20%). The possible explanation is the collinearity between features [4]. This
approach worked for smaller SNP datasets (Arabica Coffee and Wheat), but for
the other ones, the computations still failed.

Table 3: Accuracy. An asterisk (∗) indicates optimal hyperparameters estimated via
internal validation. For knnimpute we selected the best of k ∈ {3, 5, 10, 20, 50} (shown
in brackets) in a similar way. Likewise for rank ∈ {10, 20, 50, 100, 200, 300, 500} for SVD
method. The missForest method was run for first 100 features only as it is not possible
to run it for a whole dataset. Best accuracy per column in bold. All results rounded
to 3 dp.

0.01 0.05 0.1 0.2 0.3 0.01 0.05 0.1 0.2 0.3

Maize Eucalyptus

∆ = 15∗ ∆ = 15∗ ∆ = 10∗ ∆ = 5∗ ∆ = 5∗ ∆ = 10∗ ∆ = 5∗ ∆ = 5∗ ∆ = 3∗ ∆ = 3∗
ChARF ν = 1∗ ν = 1∗ ν = 1∗ ν = 1∗ ν = 1∗ ν = 5∗ ν = 10∗ ν = 10∗ ν = 10∗ ν = 10∗

0.952 0.935 0.916 0.882 0.845 0.970 0.950 0.926 0.866 0.810
kNN (5/10) 0.803 0.802 0.801 0.798 0.794 0.851 0.849 0.847 0.843 0.839

mode 0.727 0.727 0.726 0.727 0.726 0.725 0.732 0.731 0.730 0.729
SVD (50/500) 0.647 0.648 0.645 0.643 0.636 0.788 0.788 0.788 0.785 0.780

MICE – – – – – – – – – –
missForest 0.662 0.650 0.622 0.593 0.580 0.684 0.673 0.626 0.564 0.521

Colorado Beetle Arabica Coffee

∆ = 10∗ ∆ = 10∗ ∆ = 5∗ ∆ = 5∗ ∆ = 3∗ ∆ = 15∗ ∆ = 10∗ ∆ = 5∗ ∆ = 3∗ ∆ = 3∗
ChARF ν = 1∗ ν = 1∗ ν = 1∗ ν = 1∗ ν = 1∗ ν = 3∗ ν = 3∗ ν = 5∗ ν = 10∗ ν = 3∗

0.835 0.824 0.818 0.805 0.792 0.897 0.886 0.878 0.866 0.854
kNN (50/10) 0.765 0.763 0.765 0.765 0.764 0.867 0.866 0.866 0.865 0.864

mode 0.761 0.760 0.762 0.761 0.761 0.807 0.804 0.805 0.805 0.804
SVD (50/100) 0.740 0.737 0.737 0.735 0.734 0.693 0.694 0.696 0.692 0.690

MICE – – – – – 0.757 0.741 0.724 0.689 0.664
missForest 0.352 0.349 0.361 0.326 0.335 0.497 0.480 0.533 0.541 0.586

Wheat Coffea Canephora

∆ = 8∗ ∆ = 5∗ ∆ = 5∗ ∆ = 3∗ ∆ = 3∗ ∆ = 10∗ ∆ = 10∗ ∆ = 5∗ ∆ = 5∗ ∆ = 3∗
ChARF ν = 10∗ ν = 10∗ ν = 10∗ ν = 10∗ ν = 10∗ ν = 1∗ ν = 1∗ ν = 1∗ ν = 1∗ ν = 1∗

0.821 0.808 0.795 0.777 0.762 0.799 0.781 0.761 0.731 0.717
kNN (10/10) 0.823 0.819 0.818 0.815 0.811 0.737 0.739 0.737 0.734 0.731

mode 0.729 0.727 0.729 0.729 0.727 0.691 0.693 0.692 0.692 0.691
SVD (200/50) 0.622 0.618 0.609 0.600 0.594 0.456 0.453 0.450 0.449 0.450

MICE 0.641 0.635 0.621 0.585 0.545 – – – – –
missForest 0.614 0.736 0.746 0.756 0.755 0.377 0.449 0.442 0.395 0.383

In most cases, the experiments show better or competitive performance w.r.t.
benchmark methods (Table 3). At the same time, we see that with the rise of
the missing value ratio the accuracy of imputation diminishes. This is explained
by the very small size of training data even on small windows for a big number
of missing values. However, for a moderate missing value ratio, our method
consistently outperforms its alternatives.
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4.1 Time complexity analysis

The complexity of ChARF is O(pN logN) w.r.t. the number of features for a
single tree and for an ensemble is O( p

∆ ·∆N logN) ∼ O(pN logN) (fixed number
of chains and ensemble members).

We expect that the kNN and SVD methods’ time complexity is linear w.r.t.
a number of features. For the MICE method time, the complexity depends on
the base per feature estimator. In the simulation, we use a decision tree and
random forest as base estimators. For a single decision tree, the complexity
is O(pN logN), and thus total complexity is quadratic w.r.t. the number of
features. Random forests consist of individual decision trees, but it is possible to
select a number of features per tree. The standard choice is √p features per tree,
which makes the total complexity O(p

√
p) and is already substantially slower

than linear complexity for a big number of features p. The same estimation
holds for the MissForest method. However, we can reach linear complexity if
we put a number of features per tree equal to come constant, which we try in
the previous subsection. These theoretic estimations are well supported in the
simulation study, see Fig. 7. We empirically compare the time complexity of
the imputation methods on subsets of the Eucalyptus dataset under the MCAR
scenario with 10% missing values. The subsets are selected as first ps features of
the original dataset, 10 < ps < 500.

Fig. 7: Empirical results on time complexity for imputation methods.

5 Conclusions and future work

We propose a new approach: tackling missing value imputation as a multi-label
predictive problem. First, we suggest Autoreplicative Random Forests as a sim-
pler alternative for Denoising Autoencoders. With this simple but efficient idea,
we can obtain competitive results, which may be further improved by more so-
phisticated multi-label models. This method does require complete cases for the
training phase, though we suppose that in real-world low-dimensional data this
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scenario is still quite realistic. Besides, it is possible to tune this method by
splitting the data into blocks of complete and missing features.

For high-dimensional datasets, when having complete data in all features
is very unlikely, we propose Chains of Autoreplicative Random Forests. This
method splits data into windows of consequent features and imputes missing
values window by window while incorporating information from already pro-
cessed features. We test this approach on SNP datasets and demonstrate a very
competitive predictive power. Our method requires neither reference panels nor
complete data for training and thus can be used in a variety of real-world sce-
narios when imputation of missing data is required. Our approach consists of
two main novelties: it is model agnostic (we used using Random Forests in ex-
periments) in regards to the Autoreplicator; essentially an Autoencoder with
no explicit encoding; and operates on windows of data. Our approach proved
competitive, and is promising for further investigation.

In future work, we are going to improve algorithm performance on datasets
with a big number of missing values and make it more stable w.r.t. high missing
value ratios. As preliminary experiments show that this approach works for the
MAR scenario as well, we will further analyze the performance of the ChARF
method for other patterns of missingness.

We will look at allowing multiple hypotheses and their distribution per a
single missing value. This would allow a greater chance of capturing the true
mode and incorporating this uncertainty to further data analysis.
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